Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 169: 105567, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348761

RESUMO

COVID-19 affects primarily the lung. However, several other systemic alterations, including muscle weakness, fatigue and myalgia have been reported and may contribute to the disease outcome. We hypothesize that changes in the neuromuscular system may contribute to the latter symptoms observed in COVID-19 patients. Here, we showed that C57BL/6J mice inoculated intranasally with the murine betacoronavirus hepatitis coronavirus 3 (MHV-3), a model for studying COVID-19 in BSL-2 conditions that emulates severe COVID-19, developed robust motor alterations in muscle strength and locomotor activity. The latter changes were accompanied by degeneration and loss of motoneurons that were associated with the presence of virus-like particles inside the motoneuron. At the neuromuscular junction level, there were signs of atrophy and fragmentation in synaptic elements of MHV-3-infected mice. Furthermore, there was muscle atrophy and fiber type switch with alteration in myokines levels in muscles of MHV-3-infected mice. Collectively, our results show that acute infection with a betacoronavirus leads to robust motor impairment accompanied by neuromuscular system alteration.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Camundongos , Animais , Camundongos Endogâmicos C57BL , Neurônios Motores , Junção Neuromuscular , Vírus da Hepatite Murina/fisiologia
2.
Life Sci ; 324: 121750, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142087

RESUMO

AIMS: Millions of people died during the COVID-19 pandemic, but the vast majority of infected individuals survived. Now, some consequences of the disease, known as long COVID, are been revealed. Although the respiratory system is the target of Sars-CoV-2, COVID-19 can influence other parts of the body, including bone. The aim of this work was to investigate the impact of acute coronavirus infection in bone metabolism. MAIN METHODS: We evaluated RANKL/OPG levels in serum samples of patients with and without acute COVID-19. In vitro, the effects of coronavirus in osteoclasts and osteoblasts were investigated. In vivo, we evaluated the bone phenotype in a BSL2 mouse model of SARS-like disease induced by murine coronavirus (MHV-3). KEY FINDINGS: Patients with acute COVID-19 presented decreased OPG and increased RANKL/OPG ratio in the serum versus healthy individuals. In vitro, MHV-3 infected macrophages and osteoclasts, increasing their differentiation and TNF release. Oppositely, osteoblasts were not infected. In vivo, MHV-3 lung infection triggered bone resorption in the femur of mice, increasing the number of osteoclasts at 3dpi and decreasing at 5dpi. Indeed, apoptotic-caspase-3+ cells have been detected in the femur after infection as well as viral RNA. RANKL/OPG ratio and TNF levels also increased in the femur after infection. Accordingly, the bone phenotype of TNFRp55-/- mice infected with MHV-3 showed no signs of bone resorption or increase in the number of osteoclasts. SIGNIFICANCE: Coronavirus induces an osteoporotic phenotype in mice dependent on TNF and on macrophage/osteoclast infection.


Assuntos
Reabsorção Óssea , COVID-19 , Animais , Humanos , Camundongos , Reabsorção Óssea/metabolismo , Diferenciação Celular , COVID-19/metabolismo , Osteoblastos , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Pandemias , Fenótipo , Síndrome de COVID-19 Pós-Aguda , Ligante RANK/metabolismo , SARS-CoV-2/metabolismo , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo
3.
BMC Biol ; 21(1): 36, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797789

RESUMO

BACKGROUND: Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS: We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.


Assuntos
COVID-19 , Testículo , Tropismo Viral , Animais , Humanos , Masculino , Angiotensina II/metabolismo , Chlorocebus aethiops , COVID-19/patologia , SARS-CoV-2 , Testículo/imunologia , Testículo/virologia , Células Vero
4.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36526272

RESUMO

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Assuntos
COVID-19 , Sepse , Humanos , Camundongos , Animais , Oseltamivir/efeitos adversos , Zanamivir/efeitos adversos , Neuraminidase/metabolismo , Neuraminidase/farmacologia , Neutrófilos , Metaloproteinase 9 da Matriz/metabolismo , Espécies Reativas de Oxigênio , Lipopolissacarídeos/farmacologia , Sepse/induzido quimicamente
5.
Cells ; 11(17)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36078125

RESUMO

Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2-26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.


Assuntos
Febre de Chikungunya , Inflamação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Artralgia , Febre de Chikungunya/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Receptores de Formil Peptídeo/metabolismo
6.
ASN Neuro ; 14: 17590914221121257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017573

RESUMO

SUMMARY STATEMENT: In utero exposure to ZIKV leads to decreased number of neurons in adult mice. Female mice exposed to ZIKV in utero exhibit lower levels of BDNF, a decrease in synaptic markers, memory deficits, and risk-taking behavior during adulthood.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Feminino , Masculino , Transtornos da Memória/etiologia , Camundongos , Neurônios , Infecção por Zika virus/complicações
7.
bioRxiv ; 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33200130

RESUMO

Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.

8.
PLoS Negl Trop Dis ; 15(5): e0009425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048439

RESUMO

Zika virus (ZIKV) infection of neurons leads to neurological complications and congenital malformations of the brain of neonates. To date, ZIKV mechanism of infection and pathogenesis is not entirely understood and different studies on gene regulation of ZIKV-infected cells have identified a dysregulation of inflammatory and stem cell maintenance pathways. MicroRNAs (miRNAs) are post-transcriptional regulators of cellular genes and they contribute to cell development in normal function and disease. Previous reports with integrative analyses of messenger RNAs (mRNAs) and miRNAs during ZIKV infection have not identified neurological pathway defects. We hypothesized that dysregulation of pathways involved in neurological functions will be identified by RNA profiling of ZIKV-infected fetal neurons. We therefore used microarrays to analyze gene expression levels following ZIKV infection of fetal murine neurons. We observed that the expression levels of transcription factors such as neural PAS domain protein 4 (Npas4) and of three members of the orphan nuclear receptor 4 (Nr4a) were severely decreased after viral infection. We confirmed that their downregulation was at both the mRNA level and at the protein level. The dysregulation of these transcription factors has been previously linked to aberrant neural functions and development. We next examined the miRNA expression profile in infected primary murine neurons by microarray and found that various miRNAs were dysregulated upon ZIKV infection. An integrative analysis of the differentially expressed miRNAs and mRNAs indicated that miR-7013-5p targets Nr4a3 gene. Using miRmimics, we corroborated that miR-7013-5p downregulates Nr4a3 mRNA and protein levels. Our data identify a profound dysregulation of neural transcription factors with an overexpression of miR-7013-5p that results in decreased Nr4a3 expression, likely a main contributor to ZIKV-induced neuronal dysfunction.


Assuntos
Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Embrião de Mamíferos/virologia , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/genética , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética
9.
J Leukoc Biol ; 106(3): 619-629, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31392775

RESUMO

This study investigates the participation of PI3Kγ in the development of joint inflammation and dysfunction in an experimental model of acute gout in mice. Acute gout was induced by injection of monosodium urate (MSU) crystals into the tibiofemoral joint of mice. The involvement of PI3Kγ was evaluated using a selective inhibitor and mice deficient for PI3Kγ (PI3Kγ-/- ) or with loss of kinase activity. Neutrophils recovered from the inflamed joint were quantified and stained for phosphorylated Akt (pAkt) and production of reactive oxygen species (ROS). The adherence of leukocytes to the joint microvasculature was assessed by intravital microscopy and cleaved caspase-1 by Western blot. Injection of MSU crystals induced massive accumulation of neutrophils expressing phosphorylated Akt. In the absence of PI3Kγ, there was reduction of pAkt expression, chemokine production, and neutrophil recruitment. Genetic or pharmacological inhibition of PI3Kγ reduced the adherence of leukocytes to the joint microvasculature, even in joints with established inflammation. Neutrophils from PI3Kγ-/- mice produced less ROS than wild-type neutrophils. There was decreased joint damage and dysfunction in the absence of PI3Kγ. In addition, in the absence of PI3Kγ activity, there was reduction of cleaved caspase-1 and IL-1ß production in synovial tissue after injection of MSU crystals and leukotriene B4 . Our studies suggest that PI3Kγ is crucial for MSU crystal-induced acute joint inflammation. It is necessary for regulating caspase-1 activation and for mediating neutrophil migration and activation. Drugs that impair PI3Kγ function may be useful to control acute gout inflammation.


Assuntos
Artrite Gotosa/enzimologia , Artrite Gotosa/imunologia , Caspase 1/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Infiltração de Neutrófilos , Doença Aguda , Animais , Adesão Celular , Movimento Celular , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Citoplasma/metabolismo , Ativação Enzimática , Inflamassomos/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Articulações/patologia , Leucotrieno B4/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microvasos/patologia , Neutrófilos/metabolismo , Nociceptividade , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membrana Sinovial/irrigação sanguínea , Ácido Úrico
10.
Viruses ; 11(6)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212905

RESUMO

Zika virus (ZIKV) only induces mild symptoms in adults; however, it can cause congenital Zika syndrome (CZS), including microcephaly. Most of the knowledge on ZIKV pathogenesis was gained using immunocompromised mouse models, which do not fully recapitulate human pathology. Moreover, the study of the host immune response to ZIKV becomes challenging in these animals. Thus, the main goal of this study was to develop an immunocompetent mouse model to study the ZIKV spread and teratogeny. FVB/NJ immune competent dams were infected intravaginally with ZIKV during the early stage of pregnancy. We found that the placentae of most fetuses were positive for ZIKV, while the virus was detected in the brain of only about 42% of the embryos. To investigate the host immune response, we measured the expression of several inflammatory factors. Embryos from ZIKV-infected dams had an increased level of inflammatory factors, as compared to Mock. Next, we compared the gene expression levels in embryos from ZIKV-infected dams that were either negative or positive for ZIKV in the brain. The mRNA levels of viral response genes and cytokines were increased in both ZIKV-positive and negative brains. Interestingly, the levels of chemokines associated with microcephaly in humans, including CCL2 and CXCL10, specifically increased in embryos harboring ZIKV in the embryo brains.


Assuntos
Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Complicações Infecciosas na Gravidez/patologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Encéfalo/virologia , Feminino , Perfilação da Expressão Gênica , Fatores Imunológicos/biossíntese , Camundongos , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia
11.
EBioMedicine ; 44: 516-529, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31130472

RESUMO

BACKGROUND: Zika virus (ZIKV) infection during pregnancy may cause major congenital defects, including microcephaly, ocular, articular and muscle abnormalities, which are collectively defined as Congenital Zika Syndrome. Here, we performed an in-depth characterization of the effects of congenital ZIKV infection (CZI) in immunocompetent mice. METHODS: Pregnant dams were inoculated with ZIKV on embryonic day 5.5 in the presence or absence of a sub-neutralizing dose of a pan-flavivirus monoclonal antibody (4G2) to evaluate the potential role of antibody-dependent enhancement phenomenon (ADE) during short and long outcomes of CZI. FINDINGS: ZIKV infection induced maternal immune activation (MIA), which was associated with occurrence of foetal abnormalities and death. Therapeutic administration of AH-D antiviral peptide during the early stages of pregnancy prevented ZIKV replication and death of offspring. In the post-natal period, CZI was associated with a decrease in whole brain volume, ophthalmologic abnormalities, changes in testicular morphology, and disruption in bone microarchitecture. Some alterations were enhanced in the presence of 4G2 antibody. INTERPRETATION: Our results reveal that early maternal ZIKV infection causes several birth defects in immunocompetent mice, which can be potentiated by ADE phenomenon and are associated with MIA. Additionally, antiviral treatment with AH-D peptide may be beneficial during early maternal ZIKV infection. FUND: This work was supported by the Brazilian National Science Council (CNPq, Brazil), Minas Gerais Foundation for Science (FAPEMIG), Funding Authority for Studies and Projects (FINEP), Coordination of Superior Level Staff Improvement (CAPES), National Research Foundation of Singapore and Centre for Precision Biology at Nanyang Technological University.


Assuntos
Anticorpos Facilitadores/imunologia , Interações Hospedeiro-Patógeno/imunologia , Complicações Infecciosas na Gravidez , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Peptídeos/farmacologia , Gravidez , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Baço/virologia , Síndrome , Resultado do Tratamento , Carga Viral , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/tratamento farmacológico
12.
Artigo em Inglês | MEDLINE | ID: mdl-31061163

RESUMO

Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world's population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2'-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed the anti-DENV activity of these nucleoside analogs. Molecular models were assembled for DENV serotype 2 (DENV-2) and JEV RNA-dependent RNA polymerase replication complexes bound to nucleotide inhibitors. These models show similarities between JEV and DENV-2, which recognize the same nucleotide inhibitors. Collectively, our findings provide promising compounds and a structural rationale for the development of direct-acting antiviral agents with dual activity against JEV and DENV infections.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Vírus da Encefalite Japonesa (Subgrupo)/efeitos dos fármacos , Nucleosídeos/análogos & derivados , Animais , Antivirais/química , Chlorocebus aethiops , Dengue/sangue , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Vírus da Encefalite Japonesa (Subgrupo)/genética , Vírus da Encefalite Japonesa (Subgrupo)/fisiologia , Encefalite por Arbovirus/tratamento farmacológico , Camundongos , Modelos Moleculares , Nucleosídeos/química , Nucleosídeos/farmacologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
13.
PLoS Negl Trop Dis ; 13(1): e0007072, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699122

RESUMO

Yellow fever virus (YFV) is a member of the Flaviviridae family. In Brazil, yellow fever (YF) cases have increased dramatically in sylvatic areas neighboring urban zones in the last few years. Because of the high lethality rates associated with infection and absence of any antiviral treatments, it is essential to identify therapeutic options to respond to YFV outbreaks. Repurposing of clinically approved drugs represents the fastest alternative to discover antivirals for public health emergencies. Other Flaviviruses, such as Zika (ZIKV) and dengue (DENV) viruses, are susceptible to sofosbuvir, a clinically approved drug against hepatitis C virus (HCV). Our data showed that sofosbuvir docks onto YFV RNA polymerase using conserved amino acid residues for nucleotide binding. This drug inhibited the replication of both vaccine and wild-type strains of YFV on human hepatoma cells, with EC50 values around 5 µM. Sofosbuvir protected YFV-infected neonatal Swiss mice and adult type I interferon receptor knockout mice (A129-/-) from mortality and weight loss. Because of its safety profile in humans and significant antiviral effects in vitro and in mice, Sofosbuvir may represent a novel therapeutic option for the treatment of YF. Key-words: Yellow fever virus; Yellow fever, antiviral; sofosbuvir.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , RNA Viral/efeitos dos fármacos , Sofosbuvir/farmacologia , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , RNA Viral/sangue , RNA Viral/genética , Células Vero , Febre Amarela/sangue , Febre Amarela/patologia , Febre Amarela/virologia , Vírus da Febre Amarela/genética
14.
Nat Mater ; 17(11): 971-977, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349030

RESUMO

Zika virus is a mosquito-borne virus that is associated with neurodegenerative diseases, including Guillain-Barré syndrome1 and congenital Zika syndrome2. As Zika virus targets the nervous system, there is an urgent need to develop therapeutic strategies that inhibit Zika virus infection in the brain. Here, we have engineered a brain-penetrating peptide that works against Zika virus and other mosquito-borne viruses. We evaluated the therapeutic efficacy of the peptide in a lethal Zika virus mouse model exhibiting systemic and brain infection. Therapeutic treatment protected against mortality and markedly reduced clinical symptoms, viral loads and neuroinflammation, as well as mitigated microgliosis, neurodegeneration and brain damage. In addition to controlling systemic infection, the peptide crossed the blood-brain barrier to reduce viral loads in the brain and protected against Zika-virus-induced blood-brain barrier injury. Our findings demonstrate how engineering strategies can be applied to develop peptide therapeutics and support the potential of a brain-penetrating peptide to treat neurotropic viral infections.


Assuntos
Antivirais/uso terapêutico , Encéfalo/metabolismo , Peptídeos/uso terapêutico , Infecção por Zika virus/tratamento farmacológico , Animais , Antivirais/farmacocinética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacocinética
15.
Front Immunol ; 9: 3019, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619361

RESUMO

Eosinophils have been long associated with helminthic infections, although their functions in these diseases remain unclear. During schistosomiasis caused by the trematode Schistosoma mansoni, eosinophils are specifically recruited and migrate to sites of granulomatous responses where they degranulate. However, little is known about the mechanisms of eosinophil secretion during this disease. Here, we investigated the degranulation patterns, including the cellular mechanisms of major basic protein-1 (MBP-1) release, from inflammatory eosinophils in a mouse model of S. mansoni infection (acute phase). Fragments of the liver, a major target organ of this disease, were processed for histologic analyses (whole slide imaging), conventional transmission electron microscopy (TEM), and immunonanogold EM using a pre-embedding approach for precise localization of major basic protein 1 (MBP-1), a typical cationic protein stored pre-synthesized in eosinophil secretory (specific) granules. A well-characterized granulomatous inflammatory response with a high number of infiltrating eosinophils surrounding S. mansoni eggs was observed in the livers of infected mice. Moreover, significant elevations in the levels of plasma Th2 cytokines (IL-4, IL-13, and IL-10) and serum enzymes (alanine aminotransferase and aspartate aminotransferase) reflecting altered liver function were detected in response to the infection. TEM quantitative analyses revealed that while 19.1% of eosinophils were intact, most of them showed distinct degranulation processes: cytolysis (13.0%), classical and/or compound exocytosis identified by granule fusions (1.5%), and mainly piecemeal degranulation (PMD) (66.4%), which is mediated by vesicular trafficking. Immunonanogold EM showed a consistent labeling for MBP-1 associated with secretory granules. Most MBP-1-positive granules had PMD features (79.0 ± 4.8%). MBP-1 was also present extracellularly and on vesicles distributed in the cytoplasm and attached to/surrounding the surface of emptying granules. Our data demonstrated that liver-infiltrating mouse eosinophils are able to degranulate through different secretory processes during acute experimental S. mansoni infections with PMD being the predominant mechanism of eosinophil secretion. This means that a selective secretion of MBP-1 is occurring. Moreover, our study demonstrates, for the first time, a vesicular trafficking of MBP-1 within mouse eosinophils elicited by a helminth infection. Vesicle-mediated secretion of MBP-1 may be relevant for the rapid release of small concentrations of MBP-1 under cell activation.


Assuntos
Degranulação Celular/imunologia , Proteína Básica Maior de Eosinófilos/metabolismo , Eosinófilos/imunologia , Proteínas de Membrana/metabolismo , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Animais , Modelos Animais de Doenças , Proteína Básica Maior de Eosinófilos/imunologia , Eosinófilos/metabolismo , Eosinófilos/ultraestrutura , Humanos , Fígado/citologia , Fígado/imunologia , Fígado/parasitologia , Proteínas de Membrana/imunologia , Camundongos , Microscopia Eletrônica de Transmissão , Esquistossomose mansoni/parasitologia , Vesículas Secretórias/imunologia , Vesículas Secretórias/ultraestrutura
16.
Front Immunol ; 8: 1016, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878777

RESUMO

Zika virus (ZIKV) has recently caused a worldwide outbreak of infections associated with severe neurological complications, including microcephaly in infants born from infected mothers. ZIKV exhibits high neurotropism and promotes neuroinflammation and neuronal cell death. We have recently demonstrated that N-methyl-d-aspartate receptor (NMDAR) blockade by memantine prevents ZIKV-induced neuronal cell death. Here, we show that ZIKV induces apoptosis in a non-cell autonomous manner, triggering cell death of uninfected neurons by releasing cytotoxic factors. Neuronal cultures infected with ZIKV exhibit increased levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and glutamate. Moreover, infected neurons exhibit increased expression of GluN2B and augmented intracellular Ca2+ concentration. Blockade of GluN2B-containing NMDAR by ifenprodil normalizes Ca2+ levels and rescues neuronal cell death. Notably, TNF-α and IL-1ß blockade decreases ZIKV-induced Ca2+ flux through GluN2B-containing NMDARs and reduces neuronal cell death, indicating that these cytokines might contribute to NMDAR sensitization and neurotoxicity. In addition, ZIKV-infected cultures treated with ifenprodil exhibits increased activation of the neuroprotective pathway including extracellular signal-regulated kinase and cAMP response element-binding protein, which may underlie ifenprodil-mediated neuroprotection. Together, our data shed some light on the neurotoxic mechanisms triggered by ZIKV and begin to elucidate how GluN2B-containing NMDAR blockade can prevent neurotoxicity.

17.
mBio ; 8(2)2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442607

RESUMO

Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/administração & dosagem , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Infecção por Zika virus/complicações , Infecção por Zika virus/patologia , Zika virus/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Camundongos , Resultado do Tratamento
18.
Eur J Immunol ; 47(3): 585-596, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27995621

RESUMO

Gout is a self-limited inflammatory disease caused by deposition of monosodium urate (MSU) crystals in the joints. Resolution of inflammation is an active process leading to restoration of tissue homeostasis. Here, we studied the role of Annexin A1 (AnxA1), a glucocorticoid-regulated protein that has anti-inflammatory and proresolving actions, in resolution of acute gouty inflammation. Injection of MSU crystals in the knee joint of mice induced inflammation that was associated with expression of AnxA1 during the resolving phase of inflammation. Neutralization of AnxA1 with antiserum or blockade of its receptor with BOC-1 (nonselective) or WRW4 (selective) prevented the spontaneous resolution of gout. There was greater neutrophil infiltration after challenge with MSU crystals in AnxA1 knockout mice (AnxA1-/- ) and delayed resolution associated to decreased neutrophil apoptosis and efferocytosis. Pretreatment of mice with AnxA1-active N-terminal peptide (Ac2-26 ) decreased neutrophil influx, IL-1ß, and CXCL1 production in periarticular joint. Posttreatment with Ac2-26 decreased neutrophil accumulation, IL-1ß, and hypernociception, and improved the articular histopathological score. Importantly, the therapeutic effects of Ac2-26 were associated with increased neutrophils apoptosis and shortened resolution intervals. In conclusion, AnxA1 plays a crucial role in the context of acute gouty inflammation by promoting timely resolution of inflammation.


Assuntos
Anexina A1/metabolismo , Anti-Inflamatórios/uso terapêutico , Gota/tratamento farmacológico , Inflamação/tratamento farmacológico , Articulações/efeitos dos fármacos , Neutrófilos/fisiologia , Peptídeos/uso terapêutico , Animais , Anexina A1/genética , Anexina A1/uso terapêutico , Anticorpos Bloqueadores/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/genética , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Gota/induzido quimicamente , Gota/imunologia , Humanos , Inflamação/imunologia , Articulações/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Ácido Úrico
19.
Eur J Immunol ; 46(1): 204-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26449770

RESUMO

Gout manifests as recurrent episodes of acute joint inflammation and pain due to the deposition of monosodium urate (MSU) crystals within the affected tissue in a process dependent on NLRP3 inflammasome activation. The synthesis, activation, and release of IL-1ß are crucial for MSU-induced inflammation. The current study evaluated the mechanism by which TNF-α contributed to MSU-induced inflammation. Male C57BL/6J or transgenic mice were used in this study and inflammation was induced by the injection of MSU crystals into the joint. TNF-α was markedly increased in the joint after the injection of MSU. There was inhibition in the infiltration of neutrophils, production of CXCL1 and IL-1ß, and decreased hypernociception in mice deficient for TNF-α or its receptors. Pharmacological blockade of TNF-α with Etanercept or pentoxyfylline produced similar results. Mechanistically, TNF-α blockade resulted in lower amounts of IL-1ß protein and pro-IL-1ß mRNA transcripts in joints. Gene-modified mice that express only transmembrane TNF-α had an inflammatory response similar to that of WT mice and blockade of soluble TNF-α (XPro™1595) did not decrease MSU-induced inflammation. In conclusion, TNF-α drives expression of pro-IL-1ß mRNA and IL-1ß protein in experimental gout and that its transmembrane form is sufficient to trigger MSU-induced inflammation in mice.


Assuntos
Gota/imunologia , Hiperalgesia/etiologia , Inflamação/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Gota/complicações , Gota/metabolismo , Inflamação/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Articulação do Joelho , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Física , Reação em Cadeia da Polimerase em Tempo Real , Ácido Úrico/efeitos adversos , Ácido Úrico/imunologia
20.
PLoS Negl Trop Dis ; 9(11): e0004058, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26565697

RESUMO

The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in ß-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.


Assuntos
Vírus da Dengue/fisiologia , Interações Hospedeiro-Patógeno , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Liberação de Vírus , Animais , Anticorpos Antivirais/metabolismo , Anticorpos Facilitadores , Antivirais/metabolismo , Antivirais/uso terapêutico , Bortezomib/metabolismo , Bortezomib/uso terapêutico , Dengue/tratamento farmacológico , Dengue/patologia , Dengue/virologia , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/virologia , RNA Viral/biossíntese , Baço/virologia , Carga Viral , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...